Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Biomed Microdevices ; 25(4): 39, 2023 10 06.
Article En | MEDLINE | ID: mdl-37801137

In this paper we demonstrate how the use of frequencies ranging from 50 kHz to 5 GHz in the analysis of cells by electrorotation can open the path to the identification of differences not detectable by conventional set-ups. Earlier works usually reported electrorotation devices operating below 20 MHz, limiting the response obtained to properties associated with the cell membrane. Those devices are thus unable to resolve the physiological properties in the cytoplasm. We used microwave-based technology to extend the frequency operation to 5 GHz. At high frequencies (from tens of MHz to GHz), the electromagnetic signal passes through the membrane and allows probing the cytoplasm. This enables several applications, such as cell classification, and viability analysis. Additionally, the use of conventional microfabrication techniques reduces the cost and complexity of analysis, compared to other non-invasive methods. We demonstrated the potential of this set-up by identifying two different populations of T-lymphocytes not distinguishable through visual assessment. We also assessed the effect of calcein on cell cytoplasmic properties and used it as a controlled experiment to demonstrate the possibility of this method to detect changes happening predominantly in the cytoplasm.


Electric Conductivity , Cytoplasm , Cell Membrane
2.
Biosens Bioelectron ; 241: 115634, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37696220

Spatially resolved transfection, intracellular delivery of proteins and nucleic acids, has the potential to drastically speed up the discovery of biologically active cargos, for instance for the development of cell therapies or new genome engineering tools. We recently demonstrated the use of a high-density microelectrode array for the targeted electrotransfection of cells grown on its surface, a process called High-Definition Electroporation (HD-EP). We also developed a framework based on Design of Experiments to quickly establish optimized electroporation conditions across five different electrical pulse parameters. Here, we used this framework to optimize the transfection efficiency of primary fibroblasts with a mCherry-encoding mRNA, resulting in 98% of the cells expressing the desired fluorescent protein without any sign of cell death. That transfection yield is the highest reported so far for electroporation. Moreover, varying the pulse number was shown to modulate the fluorescence intensity of cells, indicating the dosage-controlled delivery of mRNA and protein expression. Finally, exploiting the single-electrode addressability of the microelectrode array, we demonstrated spatially resolved, high efficiency, sequential transfection of cells with three distinct mRNAs. Since the chip can be easily redesigned to feature a much large number of electrodes, we anticipate that this methodology will enable the development of dedicated screening platforms for analysis of mRNA variants at scale.

3.
J Chromatogr A ; 1689: 463726, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36586281

In proteomics, the need to precisely examine the protein compounds of small samples, requires sensitive analytical methods which can separate and enrich compounds with high precision. Current techniques require a minimal analysis time to obtain satisfactory compound separation where longer analysis time means better separation of compounds. But, molecular diffusion will create broadening of the separated compound bands over time, increasing the peak width, and thus reducing the resolution and the enrichment. Electric field gradient focusing (EFGF) is a separation technique, in which proteins are simultaneously separated and enriched by balancing a gradient electrostatic force with a constant hydrodynamic drag force. Because of this balance, analytes are continuously pushed back to their focusing point, limiting the time-dependent peak broadening due to molecular diffusion. Current EFGF techniques are however still suffering from peak broadening because of flow-profile inhomogeneities. In this paper, we propose to use AC electro-osmotic flow (AC EOF) to create a homogeneous flow in EFGF. The interference between the electric field gradient and the AC EOF was thoroughly analysed and the concept was validated using numerical simulations. The results show that a plug flow is obtained on top of a small, distorted boundary layer. While applying different DC electric fields in the electrolyte, a constant flow velocity can be obtained by including a DC offset to the electrodes generating the AC EOF. The plug flow is then maintained over the whole separation channel length, while an electric field gradient is applied. This way, the flow-induced contribution to peak broadening can be minimized in EFGF devices. By modelling the separation of green fluorescent protein (GFP) and R-Phycoerythrin (R-PE), it was shown that the peak width of separated compounds can be reduced and that the separation resolution can be improved, compared to current EFGF methods.


Electricity , Green Fluorescent Proteins , Time
4.
Cells ; 13(1)2023 12 20.
Article En | MEDLINE | ID: mdl-38201211

Among cancer diagnoses in women, ovarian cancer has the fifth-highest mortality rate. Current treatments are unsatisfactory, and new therapies are highly needed. Immunotherapies show great promise but have not reached their full potential in ovarian cancer patients. Implementation of an immune readout could offer better guidance and development of immunotherapies. However, immune profiling is often performed using a flow cytometer, which is bulky, complex, and expensive. This equipment is centralized and operated by highly trained personnel, making it cumbersome and time-consuming. We aim to develop a disposable microfluidic chip capable of performing an immune readout with the sensitivity needed to guide diagnostic decision making as close as possible to the patient. As a proof of concept of the fluidics module of this concept, acquisition of a limited immune panel based on CD45, CD8, programmed cell death protein 1 (PD1), and a live/dead marker was compared to a conventional flow cytometer (BD FACSymphony). Based on a dataset of peripheral blood mononuclear cells of 15 patients with ovarian cancer across different stages of treatment, we obtained a 99% correlation coefficient for the detection of CD8+PD1+ T cells relative to the total amount of CD45+ white blood cells. Upon further system development comprising further miniaturization of optics, this microfluidics chip could enable immune monitoring in an outpatient setting, facilitating rapid acquisition of data without the need for highly trained staff.


Outpatients , Ovarian Neoplasms , Humans , Female , Microfluidics , Leukocytes, Mononuclear , Monitoring, Immunologic , Ovarian Neoplasms/diagnosis
5.
Anal Chem ; 94(45): 15781-15789, 2022 11 15.
Article En | MEDLINE | ID: mdl-36377427

Partitions in digital PCR (dPCR) assays do not reach the detection threshold at the same time. This heterogeneity in amplification results in intermediate endpoint fluorescence values (i.e., rain) and misclassification of partitions, which has a major impact on the accuracy of nucleic acid quantification. Rain most often results from a reduced amplification efficiency or template inaccessibility; however, exactly how these contribute to rain has not been described. We developed and experimentally validated an analytical model that mechanistically explains the relationship between amplification efficiency, template accessibility, and rain. Using Monte Carlo simulations, we show that a reduced amplification efficiency leads to broader threshold cycle (Ct) distributions that can be fitted using a log-normal probability distribution. From the fit parameters, the amplification efficiency can be calculated. Template inaccessibility, on the other hand, leads to a different rain pattern, in which a distinct exponential tail in the Ct distribution can be observed. Using our model, it is possible to determine if the amplification efficiency, template accessibility, or another source is the main contributor of rain in dPCR assays. We envision that this model will facilitate and speed up dPCR assay optimization and provide an indication for the accuracy of the assay.


Rain , Polymerase Chain Reaction/methods , Monte Carlo Method
6.
J Control Release ; 352: 61-73, 2022 12.
Article En | MEDLINE | ID: mdl-36208793

Intracellular delivery is critical for a plethora of biomedical applications, including mRNA transfection and gene editing. High transfection efficiency and low cytotoxicity, however, are often beyond the capabilities of bulk techniques and synonymous with extensive empirical optimization. Moreover, bulk techniques are not amenable to large screening applications. Here, we propose an expeditious workflow for achieving optimal electroporation-based intracellular delivery. Using the multiplexing ability of a high-definition microelectrode array (MEA) chip, we performed a sequence of carefully designed experiments, multiple linear regression modelling and validation to obtain optimal conditions for on-chip electroporation of primary fibroblasts. Five electric pulse parameters were varied to generate 32 different electroporation conditions. The effect of the parameters on cytotoxicity and intracellular delivery could be evaluated with just two experiments. Most successful electroporation conditions resulted in no cell death, highlighting the low cytotoxicity of on-chip electroporation. The resulting delivery models were then used to achieve dosage-controlled delivery of small molecules, delivery of Cas9-GFP single-guide RNA complexes and transfection with an mCherry-encoding mRNA, resulting in previously unreported high-efficiency, single-cell transfection on MEAs: cells expressed mCherry on 81% of the actuated electrodes, underscoring the vast potential of CMOS MEA technology for the transfection of primary cells.


Electroporation , RNA, Guide, Kinetoplastida , Microelectrodes , Electroporation/methods , Transfection , RNA, Messenger
7.
J Acoust Soc Am ; 151(6): 3615, 2022 Jun.
Article En | MEDLINE | ID: mdl-35778184

Acoustic tweezers are increasingly utilized for the contactless manipulation of small particles. This paper provides a theoretical model demonstrating the acoustic manipulation capabilities of single-beam acoustic transducers. Analytical formulas are derived for the acoustic radiation force on an isotropic spherical object of arbitrary size, centered on a circular piston, simply supported and clamped radiator in an inviscid fluid. Using these results, the existence of a negative axial force pulling the object closer to the radiator is revealed and explored. These findings offer further insight into the feasibility of trapping objects in the near-field of a single-beam acoustic transducer. The calculations illustrate the trapping capabilities of the different emitters as a function of radiator size, particle size, and distance from the source and highlight the impact of radiator boundary conditions. Manipulation of a cell-like fluid sphere in water and an expanded polystyrene sphere in air are studied in more detail with results that are validated through finite element analysis. The developed theoretical model allows fast evaluation of acoustic radiation forces which could aid in the development of relatively simple and inexpensive contactless manipulation solutions.

8.
Pharmaceutics ; 13(9)2021 Sep 17.
Article En | MEDLINE | ID: mdl-34575570

The use of multimodal contrast agents can potentially overcome the intrinsic limitations of individual imaging methods. We have validated synthetic antiferromagnetic nanoparticles (SAF-NPs) as bimodal contrast agents for in vitro cell labeling and in vivo cell tracking using magnetic resonance imaging (MRI) and computed tomography (CT). SAF-NP-labeled cells showed high contrast in MRI phantom studies (r2* = 712 s-1 mM-1), while pelleted cells showed clear contrast enhancement in CT. After intravenous SAF-NP injection, nanoparticles accumulated in the liver and spleen, as visualized in vivo by significant MRI contrast enhancement. Intravenous injection of SAF-NP-labeled cells resulted in cell accumulation in the lungs, which was clearly detectable by using CT but not by using MRI. SAF-NPs proved to be very efficient cell labeling agents for complementary MRI- and CT-based cell tracking. Bimodal monitoring of SAF-NP labeled cells is in particular of interest for applications where the applied imaging methods are not able to visualize the particles and/or cells in all organs.

9.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Article En | MEDLINE | ID: mdl-33114177

Gold nanoparticles offer the possibility to combine both imaging and therapy of otherwise difficult to treat tumors. To validate and further improve their potential, we describe the use of gold nanostars that were functionalized with a polyethyleneglycol-maleimide coating for in vitro and in vivo photoacoustic imaging (PAI), computed tomography (CT), as well as photothermal therapy (PTT) of cancer cells and tumor masses, respectively. Nanostar shaped particles show a high absorption coefficient in the near infrared region and have a hydrodynamic size in biological medium around 100 nm, which allows optimal intra-tumoral retention. Using these nanostars for in vitro labeling of tumor cells, high intracellular nanostar concentrations could be achieved, resulting in high PAI and CT contrast and effective PTT. By injecting the nanostars intratumorally, high contrast could be generated in vivo using PAI and CT, which allowed successful multi-modal tumor imaging. PTT was successfully induced, resulting in tumor cell death and subsequent inhibition of tumor growth. Therefore, gold nanostars are versatile theranostic agents for tumor therapy.

10.
Opt Express ; 28(18): 26935-26952, 2020 Aug 31.
Article En | MEDLINE | ID: mdl-32906958

We present a compressive lens-free technique that performs tomographic imaging across a cubic millimeter-scale volume from highly sparse data. Compared with existing lens-free 3D microscopy systems, our method requires an order of magnitude fewer multi-angle illuminations for tomographic reconstruction, leading to a compact, cost-effective and scanning-free setup with a reduced data acquisition time to enable high-throughput 3D imaging of dynamic biological processes. We apply a fast proximal gradient algorithm with composite regularization to address the ill-posed tomographic inverse problem. Using simulated data, we show that the proposed method can achieve a reconstruction speed ∼10× faster than the state-of-the-art inverse problem approach in 3D lens-free microscopy. We experimentally validate the effectiveness of our method by imaging a resolution test chart and polystyrene beads, demonstrating its capability to resolve micron-size features in both lateral and axial directions. Furthermore, tomographic reconstruction results of neuronspheres and intestinal organoids reveal the potential of this 3D imaging technique for high-resolution and high-throughput biological applications.


Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Intestines/diagnostic imaging , Microscopy/methods , Organoids/diagnostic imaging , Tomography/methods , Algorithms , Animals , Cell Culture Techniques , Computer Simulation , Data Compression , Hippocampus/embryology , Humans , Neurons/cytology , Phantoms, Imaging , Rats
11.
Opt Express ; 27(10): 13581-13595, 2019 May 13.
Article En | MEDLINE | ID: mdl-31163820

Lens-free holographic microscopy (LFHM) provides a cost-effective tool for large field-of-view imaging in various biomedical applications. However, due to the unit optical magnification, its spatial resolution is limited by the pixel size of the imager. Pixel super-resolution (PSR) technique tackles this problem by using a series of sub-pixel shifted low-resolution (LR) lens-free holograms to form the high-resolution (HR) hologram. Conventional iterative PSR methods require a large number of measurements and a time-consuming reconstruction process, limiting the throughput of LFHM in practice. Here we report a deep learning-based PSR approach to enhance the resolution of LFHM. Compared with the existing PSR methods, our neural network-based approach outputs the HR hologram in an end-to-end fashion and maintains consistency in resolution improvement with a reduced number of LR holograms. Moreover, by exploiting the resolution degradation model in the imaging process, the network can be trained with a data set synthesized from the LR hologram itself without resorting to the HR ground truth. We validated the effectiveness and the robustness of our method by imaging various types of samples using a single network trained on an entirely different data set. This deep learning-based PSR approach can significantly accelerate both the data acquisition and the HR hologram reconstruction processes, therefore providing a practical solution to fast, lens-free, super-resolution imaging.


Holography/methods , Image Enhancement/methods , Microscopy/methods , Neural Networks, Computer , Algorithms , Machine Learning
12.
Anal Bioanal Chem ; 411(6): 1127-1134, 2019 Feb.
Article En | MEDLINE | ID: mdl-30637438

Sulfite is often added to beverages as an antioxidant and antimicrobial agent. In fermented beverages, sulfite is also naturally produced by yeast cells. However, sulfite causes adverse health effects in asthmatic patients and accurate measurement of the sulfite concentration is therefore very important. Current sulfite analysis methods are time- and reagent-consuming and often require costly equipment. Here, we present a system allowing sensitive, ultralow-volume sulfite measurements based on a reusable glass-silicon microdroplet platform on which microdroplet generation, addition of enzymes through chemical-induced emulsion destabilization and pillar-induced droplet merging, emulsion restabilization, droplet incubation, and fluorescence measurements are integrated. In a first step, we developed and verified a fluorescence-based enzymatic assay for sulfite by measuring its analytical performance (LOD, LOQ, the dynamic working range, and the influence of salts, colorant, and sugars) and comparing fluorescent microplate readouts of fermentation samples with standard colorimetric measurements using the 5,5'-dithiobis-(2-nitrobenzoic acid) assay of the standard Gallery Plus Beermaster analysis platform. Next, samples were analyzed on the microdroplet platform, which also showed good correlation with the standard colorimetric analysis. Although the presented platform does not allow stable reinjection of droplets due to the presence of a tight array of micropillars at the fluidics entrances to prevent channel clogging by dust, removing the pillars, and integrating miniaturized pumps and optics in a future design would allow to use this platform for high-throughput, automated, and portable screening of microbes, plant, or mammalian cells. Graphical abstract ᅟ.


Beverages/analysis , Glass/chemistry , Microfluidic Analytical Techniques/instrumentation , Silicon/chemistry , Sulfites/analysis , Equipment Design , Spectrometry, Fluorescence
13.
Opt Express ; 26(11): 14329-14339, 2018 May 28.
Article En | MEDLINE | ID: mdl-29877473

The development of portable haematology analysers receives increased attention due to their deployability in resource-limited or emergency settings. Lens-free in-line holographic microscopy is one of the technologies that is being pushed forward in this regard as it eliminates complex and expensive optics, making miniaturisation and integration with microfluidics possible. On-chip flow cytometry enables high-speed capturing of individual cells in suspension, giving rise to high-throughput cell counting and classification. To perform a real-time analysis on this high-throughput content, we propose a fast and robust framework for the classification of leukocytes. The raw data consists of holographic acquisitions of leukocytes, captured with a high-speed camera as they are flowing through a microfluidic chip. Three different types of leukocytes are considered: granulocytes, monocytes and T-lymphocytes. The proposed method bypasses the reconstruction of the holographic data altogether by extracting Zernike moments directly from the frequency domain. By doing so, we introduce robustness to translations and rotations of cells, as well as to changes in distance of a cell with respect to the image sensor, achieving classification accuracies up to 96.8%. Furthermore, the reduced computational complexity of this approach, compared to traditional frameworks that involve the reconstruction of the holographic data, allows for very fast processing and classification, making it applicable in high-throughput flow cytometry setups.

14.
Nat Commun ; 9(1): 1733, 2018 04 30.
Article En | MEDLINE | ID: mdl-29712902

Solid-state nanopores promise a scalable platform for single-molecule DNA analysis. Direct, real-time identification of nucleobases in DNA strands is still limited by the sensitivity and the spatial resolution of established ionic sensing strategies. Here, we study a different but promising strategy based on optical spectroscopy. We use an optically engineered elongated nanopore structure, a plasmonic nanoslit, to locally enable single-molecule surface enhanced Raman spectroscopy (SERS). Combining SERS with nanopore fluidics facilitates both the electrokinetic capture of DNA analytes and their local identification through direct Raman spectroscopic fingerprinting of four nucleobases. By studying the stochastic fluctuation process of DNA analytes that are temporarily adsorbed inside the pores, we have observed asynchronous spectroscopic behavior of different nucleobases, both individual and incorporated in DNA strands. These results provide evidences for the single-molecule sensitivity and the sub-nanometer spatial resolution of plasmonic nanoslit SERS.


DNA/analysis , Nanotechnology/methods , Spectrum Analysis, Raman/methods , Adsorption , Deoxyadenine Nucleotides/analysis , Deoxycytidine Monophosphate/analysis , Deoxyguanine Nucleotides/analysis , Nanopores/ultrastructure , Nanotechnology/instrumentation , Spectrum Analysis, Raman/instrumentation
15.
Biomed Opt Express ; 9(4): 1827-1841, 2018 Apr 01.
Article En | MEDLINE | ID: mdl-29675322

The high rate of drug attrition caused by cardiotoxicity is a major challenge for drug development. Here, we developed a reflective lens-free imaging (RLFI) approach to non-invasively record in vitro cell deformation in cardiac monolayers with high temporal (169 fps) and non-reconstructed spatial resolution (352 µm) over a field-of-view of maximally 57 mm2. The method is compatible with opaque surfaces and silicon-based devices. Further, we demonstrated that the system can detect the impairment of both contractility and fast excitation waves in cardiac monolayers. Additionally, the RLFI device was implemented on a CMOS-based microelectrode array to retrieve multi-parametric information of cardiac cells, thereby offering more in-depth analysis of drug-induced (cardiomyopathic) effects for preclinical cardiotoxicity screening applications.

16.
Comput Biol Med ; 96: 147-156, 2018 05 01.
Article En | MEDLINE | ID: mdl-29573668

Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost.


Flow Cytometry/methods , Holography/methods , Image Processing, Computer-Assisted/methods , Leukocytes/cytology , Single-Cell Analysis/methods , Algorithms , Equipment Design , Flow Cytometry/instrumentation , Holography/instrumentation , Humans , Machine Learning , Miniaturization , Single-Cell Analysis/instrumentation
17.
Anal Chem ; 90(7): 4263-4267, 2018 04 03.
Article En | MEDLINE | ID: mdl-29528622

Most fluorescent immunoassays require a wash step prior to read-out due to the otherwise overwhelming signal of the large number of unbound (bulk) fluorescent molecules that dominate over the signal from the molecules of interest, usually bound to a substrate. Supercritical angle fluorescence (SAF) sensing is one of the most promising alternatives to total internal reflection fluorescence for fluorescence imaging and sensing. However, detailed experimental investigation of the influence of collection angle on the SAF surface sensitivity, i.e., signal to background ratio (SBR), is still lacking. In this Letter, we present a novel technique that allows to discriminate the emission patterns of free and bound fluorophores simultaneously by collecting both angular and spectral information. The spectrum was probed at multiple positions in the back focal plane using a multimode fiber connected to a spectrometer and the difference in intensity between two fluorophores was used to calculate the SBR. Our study clearly reveals that increasing the angle of SAF collection enhances the surface sensitivity, albeit at the cost of decreased signal intensity. Furthermore, our findings are fully supported by full-field 3D simulations.

18.
Biomed Microdevices ; 20(1): 2, 2017 Nov 21.
Article En | MEDLINE | ID: mdl-29159519

Integration of microelectronics with microfluidics enables sophisticated lab-on-a-chip devices for sensing and actuation. In this paper, we investigate a novel method for in-situ microfluidics fabrication and packaging on wafer level. Two novel photo-patternable adhesive polymers were tested and compared, PA-S500H and DXL-009. The microfluidics fabrication method employs photo lithographical patterning of spin coated polymer films of PA or DXL and direct bonding of formed microfluidics to a top glass cover using die-to-wafer level bonding. These new adhesive materials remove the need for additional gluing layers. With this approach, we fabricated disposable microfluidic flow cytometers and evaluated the performance of those materials in the context of this application. DXL-009 exhibits lower autofluorescence compared to PA-S500H which improves detection sensitivity of fluorescently stained cells. Results obtained from the cytotoxicity test reveals that both materials are biocompatible. The functionality of these materials was demonstrated by detection of immunostained monocytes in microfluidic flow cytometers. The flexible, fully CMOS compatible fabrication process of these photo-patternable adhesive materials will simplify prototyping and mass manufacturing of sophisticated microfluidic devices with integrated microelectronics.


Adhesives/chemistry , Flow Cytometry/instrumentation , Lab-On-A-Chip Devices , Animals , Fibroblasts , Flow Cytometry/methods , Humans , Materials Testing , Mice , Polymers/chemistry , Signal-To-Noise Ratio
19.
Sci Rep ; 7(1): 15642, 2017 Nov 15.
Article En | MEDLINE | ID: mdl-29142267

Silicon neuroprobes hold great potential for studies of large-scale neural activity and brain computer interfaces, but data on brain response in chronic implants is limited. Here we explored with in vivo cellular imaging the response to multisite silicon probes for neural recordings. We tested a chronic implant for mice consisting of a CMOS-compatible silicon probe rigidly implanted in the cortex under a cranial imaging window. Multiunit recordings of cortical neurons with the implant showed no degradation of electrophysiological signals weeks after implantation (mean spike and noise amplitudes of 186 ± 42 µVpp and 16 ± 3.2 µVrms, respectively, n = 5 mice). Two-photon imaging through the cranial window allowed longitudinal monitoring of fluorescently-labeled astrocytes from the second week post implantation for 8 weeks (n = 3 mice). The imaging showed a local increase in astrocyte-related fluorescence that remained stable from the second to the tenth week post implantation. These results demonstrate that, in a standard electrophysiology protocol in mice, rigidly implanted silicon probes can provide good short to medium term chronic recording performance with a limited astrocyte inflammatory response. The precise factors influencing the response to silicon probe implants remain to be elucidated.


Astrocytes/drug effects , Neocortex/drug effects , Neurons/drug effects , Silicon/toxicity , Animals , Brain-Computer Interfaces , Electrodes, Implanted , Electrophysiology , Mice , Microelectrodes/adverse effects , Neocortex/physiopathology , Neurons/physiology
20.
Lab Chip ; 17(7): 1287-1296, 2017 03 29.
Article En | MEDLINE | ID: mdl-28252674

Safe, high-rate and cost-effective cell sorting is important for clinical cell isolation. However, commercial fluorescence-activated cell sorters (FACS) are expensive and prone to aerosol-induced sample contamination. Here we report a microfluidic cell sorter allowing high rate and fully enclosed cell sorting. The sorter chip consists of an array of micro heating hotspots. Pulsed resistive heating in the hotspots produces numerous micro vapor bubbles with short duration, which gives rise to a rapid jet flow for cell sorting. With this method, we demonstrated high sorting rate comparable to commercial FACS and the significant enrichment of rare cancer cells. This vapor bubble based cell sorting method can be a powerful tool for contamination-free and affordable clinical cell sorting such as circulating tumor cell isolation and cancer cell therapy.


Flow Cytometry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Cell Line, Tumor , Equipment Design , Flow Cytometry/methods , Humans , Microfluidic Analytical Techniques/methods
...